2019-2020学年人教A版选修2-3 组合 教案
2019-2020学年人教A版选修2-3   组合 教案第2页

3.排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列

4.排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示

5.排列数公式:()

6阶乘:表示正整数1到的连乘积,叫做的阶乘规定.

7.排列数的另一个计算公式:=

8.提出问题:

  示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?

  示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?

引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序"排列",而示例2只要求选出2名同学,是与顺序无关的引出课题:组合.

二、讲解新课:

1组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合

  说明:⑴不同元素;⑵"只取不排"--无序性;⑶相同组合:元素相同

例1.判断下列问题是组合还是排列

  (1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?

(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?

(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?

(4)10个人互相通信一次,共写了多少封信?

(5)10个人互通电话一次,共多少个电话?

  问题:(1)1、2、3和3、1、2是相同的组合吗?

(2)什么样的两个组合就叫相同的组合

2.组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数.用符号表示.

3.组合数公式的推导:

  (1)从4个不同元素中取出3个元素的组合数是多少呢?

启发:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数可以求得,故我们可以考察一下和的关系,如下: