2017-2018学年人教B版选修2-1 1.1.2量词 学案3
2017-2018学年人教B版选修2-1 1.1.2量词 学案3第2页

解得≤a<1.

各个击破

类题演练 1

指出下列命题中哪些是全称命题,哪些是命题,并分别用符号""""表示.

(1)存在实数a,b,使|a-1|+|b-1|=0;

(2)对于实数a∈R,a0=1;

(3)有些实数x,使得|x+1|<1.

解:命题(1)(3)是存在性命题,命题(2)是全称命题,用""""表示分别为:

(1)a,b∈R,使|a-1|+|b-1|=0.

(2)a∈R,a0=1.

(3)x∈R,使|x+1|<1.

变式提升 1

用符号""与""表示下面含有量词的命题.

(1)不等式|x-1|+|x-2|<3有实数解.

(2)若a,b是偶数,则a+b也是偶数.

解:(1)x∈R.

使|x-1|+|x-2|<3.

(2)a,b∈R且a,b为偶数,使a+b为偶数.

类题演练 2

试判断以下命题的真假:

(1)x∈N,x4≥1;

(2)x∈Z,x3<1;

(3)x∈R,x2-3x+2=0;

(4)x∈R,x2+1=0.

解析:(1)由于0∈N,当x=0时,x4≥1不成立,所以此命题是假命题.

(2)由于-1∈Z,当x=-1时,能使x3<1,

∴命题x∈Z,x3<1是真命题.

(3)假命题.因为只有x=2或x=1时满足.

(4)假命题.

∵不存在一个实数x,使x2+1=0成立.

变式提升 2

判断下列全称命题的真假.

(1)有一个内角为直角的菱形是矩形;

(2)对任意a,b∈R,若a>b,则<;

(3)对任意m∈Z且为偶数,则2m+为偶数.

解:(1)是真命题.有一个内角为直角的平行四边形是矩形,而菱形都是平行四边形,于有一个角是直角的菱形是矩形.

(2)是假命题.