1.抛物线的顶点在原点,对称轴重合于椭圆9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.
【解】 椭圆的方程可化为+=1,
其短轴在x轴上,
∴抛物线的对称轴为x轴,
∴设抛物线的方程为y2=2px或y2=-2px(p>0).
∵抛物线的焦点到顶点的距离为3,即=3,
∴p=6.
∴抛物线的标准方程为y2=12x或y2=-12x,
其准线方程分别为x=-3和x=3.
直线与抛物线的位置关系 已知抛物线的方程为y2=4x,直线l过定点P(-2,1),斜率为k(k∈R).当k为何值时,直线l与抛物线只有一个公共点,有两个公共点,没有公共点?
【精彩点拨】 要解决这个问题,只需讨论直线l的方程与抛物线的方程组成的方程组的解的情况,由方程组解的情况判断直线l与抛物线的位置关系.
【自主解答】 由题意可设直线l的方程为y-1=k(x+2),
把直线l的方程和抛物线的方程联立得方程组(*)
消去x得ky2-4y+4(2k+1)=0, ①
(1)当k=0时,由方程①得y=1.把y=1代入y2=4x中,得x=.
这时,直线l与抛物线只有一个公共点.
(2)当k≠0时,方程①的判别式为
Δ=-16(2k2+k-1).
①由Δ=0,即2k2+k-1=0,
解得k=-1或k=.
于是,当k=-1或k=时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l与抛物线只有一个公共点.
②当Δ>0,即2k2+k-1<0,解得-1