2019-2020学年人教A版选修2-1 空间角、空间距离 学案
2019-2020学年人教A版选修2-1   空间角、空间距离  学案第3页

  

  ②如图②,分别是二面角α--β的两个半平面α,β的法向量,则二面角的大小θ满足cosθ=cos<>或-cos<>

  考点四、点面距的求法

  如图,设AB为平面α的一条斜线段,为平面α的法向量,则B到平面α的距离

  要点诠释:

对于以下几类立体几何问题:(1) 共线与共面问题;(2) 平行与垂直问题;(3) 夹角问题;(4) 距离问题;(5) 探索性问题.

运用向量来解决它们有时会体现出一定的优势.用空间向量解题的关键步骤是把所求向量用某个合适的基底表示,适当地建立起空间直角坐标系,把向量用坐标表示,然后进行向量与向量的坐标运算,最后通过向量在数量上的关系反映出向量的空间位置关系,从而使问题得到解决.在寻求向量间的数量关系时,一个基本的思路是列方程,解方程.

【典型例题】

类型一、利用空间向量求空间角

【例1】已知四棱锥的底面为菱形,且,,与相交于点.

(Ⅰ)求证:底面;