演示实验4:如图6所示,AB间接有一段钨丝(从旧日光灯管中取出),闭合开关,灯泡正常发光,当用打火机给钨丝加热时,灯泡亮度明显变暗。
学生探究:钨丝的电阻随温度的升高而增大。
师生总结:用金属丝可以制作温度传感器,称为热电阻。如前面已经学过的用金属铂可制作精密的电阻温度计。
学生实验2:学生五人一组,探究热敏电阻的阻值大小与温度的关系。
实验器材:NTC热敏电阻,万用表,温度计,水杯,凉水和热水。
实验方案:按照如图所示的电路将热敏电阻接入电路,将万用表选择开关置于欧姆档,用温度计测量温度,用万用表测量不同温度下的电阻。
实验步骤:
①、按上述电路连接电路
②、取半杯热水,将热敏电阻及温度计放入热水中
③、同时测量并记录水温和电阻值
④、倒入少许冷水,改变杯中的水温,在同时测量水温和电阻值,填入表中。
实验结论:热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显。
师生总结:半导体热敏电阻也可以用作温度传感器。
师生总结比较:金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差。
(3)霍尔元件
教师介绍:霍尔元件是在一个很小的矩形半导体(例如砷化铟)薄片上,制作4个电极E、F、M、N而成(如图7所示)。若在E、F间通入恒定的电流I,同时外加与薄片垂直的匀强磁场B,薄片中的载流子就在洛伦兹力的作用下发生偏转,使M、N间出现电压U。
师生讨论:霍尔元件的上的电压U与电流I、磁感应强度B的关系,设霍尔元件长为a,宽为b,厚为d,则当薄片中载流子达到稳定状态时,,即,又因,所以,即(为霍尔系数)。因此,我们就可以根据电压U的变化得知磁感应强度的变化。
师生共析:霍尔元件能够把磁感应强度这个磁学量转换为电压这个电学量。
【课堂总结】
传感器是指一些能把光、力、温度、磁感应强度等非电学量转化为电学量或转换为电路的通断的元器件,它在生活、生产和科技领域有着非常广泛的应用。日本把传感器技术列为上世纪八十年代十大技术之首,美国把传感器技术列为九十年代的关键技术,而我国有关传感器的研究和应用正方兴未艾......
【布置作业】
1.观察与思考:日常生活中哪些地方用到了传感器,它们分别属于哪种类型的传感器,它们的工作原理如何?
2.实验设计:用热敏电阻、继电器等器材设计一个火警报警器。
3.P55,思考与练习2题完成填表。
九.【板书设计】
第一节:传感器及其工作原理
传感器:能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断的元件。
传感器的优点:把非电学量转换为电学量,很方便地进行测量、传输、处理和控制。
传感器的工作原理:
认识一些制作传感器的元器件