2017-2018学年人教B版必修三 2.2.1用样本的频率分布估计总体分布(2课时) 教案
2017-2018学年人教B版必修三     2.2.1用样本的频率分布估计总体分布(2课时)        教案第2页

  布直方图反映样本的频率分布。其一般步骤为:

(1) 计算一组数据中最大值与最小值的差,即求极差

(2) 决定组距与组数

(3) 将数据分组

(4) 列频率分布表

(5) 画频率分布直方图

  以课本P56制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图。(让学生自己动手作图)

      频率分布直方图的特征:

(1) 从频率分布直方图可以清楚的看出数据分布的总体趋势。

(2) 从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。

接下来请同学们思考下面这个问题:

〖思考〗:如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,(见课本P57)你能对制定月用水量标准提出建议吗?(让学生仔细观察表和图)

〈二〉频率分布折线图、总体密度曲线

1.频率分布折线图的定义:

连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。

2.总体密度曲线的定义:

  在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。(见课本P60)

〖思考〗:

1.对于任何一个总体,它的密度曲线是不是一定存在?为什么?

2.对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?

  实际上,尽管有些总体密度曲线是饿、客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.

〈三〉茎叶图