点,抛物线的参数方程为用中点公式得
变形为y0=x,即P点的轨迹方程为x2=4y.
表示抛物线.
在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需要引入一个中间变量即参数(将x,y表示成关于参数的函数),这种方法是参数法,而涉及曲线上的点的坐标时,可根据曲线的参数方程表示点的坐标.
3.设P为等轴双曲线x2-y2=1上的一点,F1和F2为两个焦点,证明:|F1P|·|F2P|=|OP|2.
证明:如图,设双曲线上的动点为P(x,y),焦点F1(-,0),F2(,0),双曲线的参数方程为
则:(|F1P|·|F2P|)2
=[(sec θ+)2+tan2θ]·[(sec θ-)2+tan2θ]
=(sec2 θ+2sec θ+2+tan2θ)(sec2 θ-2sec θ+2+tan2θ)
=(sec θ+1)2(sec θ-1)2
=(2sec2 θ-1)2.
又|OP|2=sec2 θ+tan2θ=2sec2 θ-1,
由此得|F1P|·|F2P|=|OP|2.
一、选择题
1.曲线(t为参数)的焦点坐标是( )
A.(1,0) B.(0,1)
C.(-1,0) D.(0,-1)