(2)事件的运算
①并事件:若某事件C发生当且仅当事件A发生或事件B发生,则称此事件C为事件A与事件B的并事件(或和事件),记作C=A∪B(或C=A+B).
②交事件:若某事件C发生当且仅当事件A发生且事件B发生,则称此事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或C=AB).
(3)概率的性质
①范围:任何事件的概率P(A)∈[0,1].
②必然事件的概率:必然事件的概率P(A)=1.
③不可能事件的概率:不可能事件的概率P(A)=0.
④概率加法公式:如果事件A与事件B互斥,则有P(A∪B)=P(A)+P(B).
⑤对立事件的概率:若事件A与事件B互为对立事件,那么A∪B为必然事件,则有P(A∪B)=P(A)+P(B)=1,即P(A)=1-P(B).
[问题思考]
(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现的点数为奇数},A与B应有怎样的关系?
提示:A⊆B.
(2)在同一试验中,对任意两个事件A、B,P(A∪B)=P(A)+P(B)一定成立吗?
提示:不一定,只有A与B互斥时,P(A∪B)=P(A)+P(B)才一定成立.
(3)若P(A)+P(B)=1,则事件A与事件B是否一定对立?试举例说明.
提示:事件A与事件B不一定对立.例如:掷一枚均匀的骰子,记事件A为出现偶数点,事件B为出现1点或2点或3点,则P(A)+P(B)=+=1.当出现2点时,事件A与事件B同时发生,所以事件A与事件B不互斥,显然也不对立.
[课前反思]
通过以上预习,必须掌握的几个知识点:
(1)事件的关系: ;
(2)事件的运算: ;
(3)概率的性质: ;
(4)互斥、对立事件的概率: .