人教版五年级数学上
课题 组合图形的面积 教学目标 1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。 重点 在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。 难点 根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。 教具 课件、图片等。 教学过程 一、 创设情境,引导探索
师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)
生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。
......
师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?
二、探索活动,寻求新知
师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?
图一 图二 图三
课件逐一出示图一、图二、图三,让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。......
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?
生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
......
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,
面积 = 三角形面积+长方形面积-正方形面积
图二:是由两个三角形组成的。
面积 = 三角形面积+ 三角形面积
图三:作辅助线使它分成一个大梯形和一个三角形。
方法一:是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?
引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?
方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。
方法三:作辅助线使它分成一个大梯形和一个三角形。
(课件分别演示这三种方法)
分割法添补法
师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。
板书:分割法或添补法(转化):分解成简单图形。
师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意坐在后排的学生表现)
师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?
生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。
......
这节课我们重点学习组合图形的面积。
三、探讨例题,学习新知
师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)
例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
师:怎样才能计算出这个组合图形的面积呢?
先让学生思考,再动手计算。
交流汇报:
方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。
师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。
指名学生找相应的条件。
在实物投影仪上展出示学生的答案:
①5×5=25 (平方米)
②5×2÷2=5(平方米)
③25+5=30 (平方米)
答:房子侧面墙的面积是30平方米。
(注意检查做错的同学,找出错的原因。)
师:除了这种方法,还有同学用别的方法吗?
方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。
师:能找出每个简单图形的已知条件吗?
让学生找相应的条件。
5m 展示学生答案:
长方形:长:5+2=7米、宽:5米;
三角形:底是2米,高是2.5米。
5×(5+2)-2.5×2÷2×2
=35-5
=30(平方米)
答:房子侧面墙的面积是30平方米。
方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。
同样让学生找出计算梯形面积的相应已知条件。
展示学生的答案:
(5+7)×2.5÷2×2=30(平方米)
答:房子侧面墙的面积是30平方米。
师:请同学们观察这几种解法,它们有什么相同的地方?
让学生发表意见。
小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)
师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据"图形位移,面积不变"的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。
四:利用新知,解决生活中的问题。
1、做一做
刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。
方法一:把组合图形分割成两个
长方形。
4×3+3×7
=12+21
=33(cm2)
方法二:分割成一个长方形和一个正方形。
4×6+3×3
=24+9
=33(cm2)
第三种方法:分割成两个梯形。
(3+7)×3÷2+(3+6)×4÷2
第四种方法:分割成一个长方形和一个正方形。
7×6-3×3
=42-9
=33(cm2)
让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。
练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。
2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?
现在你能帮工人叔叔算算这
个指示路牌的面积吗?
五、课堂评价:
师:这节课你学到了什么?
结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。