具体如下:
第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表:
姓名 试验次数 正面朝上总次数 正面朝上的比例 思考:
试验结果与其他同学比较,你的结果和他们一致吗?为什么?
第二步 由组长把本小组同学的试验结果统计一下,填入下表.
组次 试验总次数 正面朝上总次数 正面朝上的比例 思考:
与其他小组试验结果比较,正面朝上的比例一致吗?为什么?
通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.
第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?
第四步 把全班实验结果收集起来,也用条形图表示.
思考:
这个条形图有什么特点?
引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.
第五步 请同学们找出掷硬币时"正面朝上"这个事件发生的规律性.
思考:
如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?
出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.
由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.
3、讨论结果:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件(certain event),简称必然事件.
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件(impossible event),简称不可能事件.
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件(random event),简称随机事件;确定事件和随机事件统称为事件,用A,B,C,...表示.
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数na为事件A出现的频数(frequency);称事件A出现的比例fn(A)=为事件A出现的频率(relative frequency);对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的