A [原式=cos (22°+38°)=cos 60°=.]
3.化简cos(α+β)cos β+sin(α+β)sin β为( )
A.sin(2α+β) B.cos(2α-β)
C.cos α D.cos β
C [原式=cos[(α+β)-β]=cos α.]
4.cos (-40°)cos 20°-sin (-40°)sin (-20°)=________.
[解析] 原式=cos(-40°)·cos(-20°)-sin (-40°)·sin(-20°)=cos[-40°+(-20°)]=cos(-60°)=cos 60°=.
[答案]
[合 作 探 究·攻 重 难]
利用两角和与差的余弦公式化简求值
(1)cos 345°的值等于( )
A. B.
C. D.-
(2)化简下列各式:
①cos(θ+21°)cos(θ-24°)+sin(θ+21°)sin(θ-24°);
②-sin 167°·sin 223°+sin 257°·sin 313°.
[思路探究] 利用诱导公式,两角差的余弦公式求解.
[解析] (1)cos 345°=cos(360°-15°)
=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°
=.
[答案] C
(2)①原式=cos[θ+21°-(θ-24°)]
=cos 45°=,所以原式=;
②原式=-sin(180°-13°)sin(180°+43°)+sin(180°+77°)·sin(360°-47°)=sin 13°sin 43°+sin 77°sin 47°
=sin 13°sin 43°+cos 13°cos 43°