简单情况先导出一般的通式,从而简化过程.
(2)在求离散型随机变量ξ的分布列时,要充分利用分布列的性质,这样不但可以减少运算量,还可验证分布列是否正确.
[再练一题]
2.从装有6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X表示赢得的钱数,随机变量X可以取哪些值呢?求X的分布列.
【解】 从箱中取两个球的情形有以下6种:
{2白},{1白1黄},{1白1黑},{2黄},{1黑1黄},{2黑}.
当取到2白时,结果输2元,随机变量X=-2;
当取到1白1黄时,输1元,随机变量X=-1;
当取到1白1黑时,随机变量X=1;
当取到2黄时,X=0;当取到1黑1黄时,X=2;
当取到2黑时,X=4.
则X的可能取值为-2,-1,0,1,2,4.
P(X=-2)==,P(X=-1)==,
P(X=0)==,P(X=1)==,
P(X=2)==,P(X=4)==.
从而得到X的分布列如下:
X -2 -1 0 1 2 4 P [探究共研型]
二点分布
探究1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?
【提示】 这些问题的共同点是随机试验只有两个可能的结果.定义一个随机变量,使其中一个结果对应于1,另一个结果对应于0,即得到服从二点分布的随机变量.
探究2 只取两个不同值的随机变量是否一定服从二点分布?
【提示】 不一定.如随机变量X的分布列由下表给出