数条双曲线,如具有相同的渐近线y=±x的双曲线可设为-=λ(λ≠0,λ∈R),当λ>0时,焦点在x轴上,当λ<0时,焦点在y轴上.
题型一 已知双曲线的标准方程求其几何性质
例1 求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率、渐近线方程.
解 将9y2-4x2=-36化为标准方程-=1,
即-=1,
∴a=3,b=2,c=.
因此顶点为A1(-3,0),A2(3,0),
焦点为F1(-,0),F2(,0),
实轴长2a=6,虚轴长2b=4,
离心率e==,
渐近线方程为y=±x=±x.
反思与感悟 讨论双曲线的几何性质,先要将双曲线方程化为标准形式,然后根据双曲线两种形式的特点得到几何性质.
跟踪训练1 求双曲线x2-3y2+12=0的实轴长、虚轴长、焦点坐标、顶点坐标、渐近线方程、离心率.
解 将方程x2-3y2+12=0化为标准方程-=1,
∴a2=4,b2=12,∴a=2,b=2,
∴c===4.
∴双曲线的实轴长2a=4,虚轴长2b=4.
焦点坐标为F1(0,-4),F2(0,4),顶点坐标为A1(0,-2),A2(0,2),渐近线方程为y=±x,离心率e=2.
题型二 根据双曲线的几何性质求标准方程