北师大版六年级下册数学优质课《1.4圆锥的体积》教案教学设计
北师大版六年级下册数学优质课《1.4圆锥的体积》教案教学设计第2页

  2、我们学习过哪些立体图形体积的计算?(长方体,正方体)长方体、正方体的体积分别是怎样计算的?(长方体的体积=长×宽×高,正方体的体积=棱长×棱长×棱长)

  如果已知底面积和高,那么长方体和正方体的体积又可以怎样计算?(都可以用底面积乘高计算体积,即长方体(正方体)的体积=底面积×高)

  3、圆柱的体积又该怎样计算呢?(长方体和正方体的体积与底面积和高有关,并且用底面积乘高计算体积,那么圆柱也有底面积和高,圆柱的体积会不会也用底面积乘高计算呢?)下面我们试着用事实来验证。

  4、这里有一些一元的硬币,我们把这些硬币叠放在一起就形成了圆柱。同学们通过观察叠放硬币的过程,思考叠放的过程与圆柱有什么关系?

  通过叠放硬币,我们发现硬币的底面积是固定的,每增加一枚硬币,高就增加一些,体积也随之增大,由此推出:圆柱的体积=底面积×高。

  我们通过生活中的事实来大胆地验证了我们的猜想,但要想说明圆柱的体积=底面积×高,我们还需要进一步的推理证实。

(二)回忆转化方法

  想一想:学习计算圆的面积时,是怎样推导出圆的面积计算公式的?

  把圆平均分成若干个小扇形,再拼凑成一个近似的平行四边形,分的份数越多,拼成的图形越接近于长方形。长方形的面积就是圆的面积,再根据长方形与圆中各量的对应关系推导出圆的面积公式。

(三)论证推导圆柱的体积计算公式

  1、想一想:我们能不能也把圆柱转化成学过的立体图形来计算它的体积呢?怎样转化呢?

学生小组讨论交流,然后反馈汇报。