综上所述:,或,
例2:过椭圆的右焦点的直线交椭圆于两点,为其左焦点,已知的周长为8,椭圆的离心率为
(1)求椭圆的方程
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,求出该圆的方程;若不存在,请说明理由
解:(1)由的周长可得:
椭圆
(2)假设满足条件的圆为,依题意,若切线与椭圆相交,则圆应含在椭圆内
若直线斜率存在,设,
与圆相切
即
联立方程: