什么原理制成的?钟摆类似于物理上的一种理想模型--单摆。我们就来分析一下单摆来解决以上的问题。
(二)教学过程设计
(教师拿出单摆展示,同时介绍单摆构成)这就是单摆,一根绳子上端固定,下端系着一个球。物理上的单摆,是在一个固定的悬点下,用一根不可伸长的细绳,系住一个一定质量的质点,在竖直平面内小角度地摆动。所以,实际的单摆要求绳子轻而长,小球要小而重,将摆球拉到某一高度由静止释放,单摆振动类似于钟摆振动。我们这一章研究的是机械振动,而单摆振动也属于机械振动,单摆振动也是在某一平衡位置附近来回振动,这个平衡位置,就是绳子处于竖直的位置。
我们在学习机械振动时,曾经提到过机械振动的两个必要条件,一是运动中物体所受阻力要足够小;二是物体离开平衡位置后,总是受到回复力的作用。对于第一个条件单摆是符合的,单摆绳要轻而长,球要小而重都是为了减少阻力;第二个条件说到回复力。
提问:单摆的回复力又由谁来提供?
答:单摆的回复力由绳的拉力和重力的合力来提供。(教师对答案先不否定,通过对学生的提问,教师把受力图画在黑板上。)
1.单摆的回复力
要分析单摆回复力,先从单摆受力入手。单摆从A位置释放,沿AOB圆弧在平衡点O附近来回运动,以任一位置C为例,此时摆球受重力G,拉力T作用,由于摆球沿圆弧运动,所以将重力分解成切线方向分力G1和沿半径方向G2,悬线拉力T和G2合力必然沿半径指向圆心,提供了向心力。那么另一重力分力G1不论是在O左侧还是右侧始终指向平衡位置,而且正是在G1作用下摆球才能回到平衡位置。(此处可以再复习平衡位置与回复力的关系:平衡位置是回复力为零的位置。)因此G1就是摆球的回复力。回复力怎么表示?由单摆的回复力的表达式能否看出单摆的振动是简谐运动?书上已给出了具体的推导过程,其中用到了两个近似:(1)sinα≈α;(2)在小角度下AO直线与AO弧线近似相等。这两个近似成立的条件是摆角很小,α<5°。(见附表,打印在投影片上。)由投影片我们可知α在5°之内,并且以弧度为角度单位,sinα≈α。
在分析了推导过程后,给出结论:α<5°的情况下,单摆的回复力为
满足简谐运动的条件,即物体在大小与位移大小成正比,方向与位移方向相反的回复力作用下的振动,为简谐运动。所以,当α<5°时,单摆振动是一种简谐运动。
2.单摆振动是简谐运动
特征:回复力大小与位移大小成正比,方向与位移方向相反。