(1) 因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨.
(2) 因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨.
函数在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,.它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.
反思总结
1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.
2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.
当堂检测
1. 函数的导数是( )
A. B. C. D.
2. 函数的导数是( )
A. B.
C. D.
3. 的导数是( )
A. B.
C. D.
4. 函数,且,
则=
5.曲线在点处的切线方程为
板书设计 略
作业 略