一、复习导入:
1.说出学过的平面图形。
2.在这些图形中,哪些图形的面积你会求?
二、探究新知:
1.教学例 1:
(1)出示例 1 中的第 1 组图
要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)
预设:学生大多会用数方格方法进行比较,对于出现"转化"教师应当鼓励,并加以引导。
(2)出示例 1 中的第 2 组图
你还能比较出这两个图形的大小吗?(学生交流,教师适当强调"转化"的方法,同时让学生思考第1组图也可以用"转化"的方法吗?)
(3)揭示课题:
师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。
今天我们来研究"平行四边形面积的计算"。(板书课题)
2.教学例 2: M
(1)出示一个平行四边形
师:你能想办法把这个平行四边形转化成长方形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况
第一种:①沿着平行四边形的高剪下左边的直角三角形。
②把这个三角形向右平移。
③倒过来斜边重合。
第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。
②把左侧的梯形向右平移。
③倒过来斜边重合。
(4)小组讨论:比较两种转化方法,说说它们有什么相同的地方?
3.教学例 3:
(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第 115 页上任选一个平行四边形剪下来(课前准备),先把它转化成长方形,再求出面积并填写下表。
转化后的长方形 平行四边形 长(cm) 宽(cm) 面积(cm²) 底(cm) 高(cm) 面积(cm²) (2)学生操作,反馈交流。
(3)小组讨论。
①转化后长方形的面积与原平行四边形面积相等吗?
②长方形的长和宽与平行四边形的底和高有什么关系?
③根据长方形的面积公式,怎样求出平行四边形的面积?
(6)学生总结,形成下面的板书:
长方形的面积 = 长 × 宽
平行四边形的面积 = 底 × 高
S = a × h
三、巩固练习:
1.指导完成试一试:
明确应用公式求平行四边形的面积一般要有两个条件,即底和高。
2.指导完成练一练:
强调底和高的对应关系。
四、总结:
通过今天的学习有哪些收获?