的图形的面积的相反数.
[预习导引]
1.曲边梯形的面积
(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①所示).
(2)求曲边梯形面积的方法
把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形"以直代曲",即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).
(3)求曲边梯形面积的步骤:①分割,②近似代替,③求和,④取极限.
2.求变速直线运动的(位移)路程
如果物体做变速直线运动,速度函数v=v(t),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a≤t≤b内所作的位移s.
3.定积分的概念
如果函数f(x)在区间[a,b]上连续,用分点a=x0 4.定积分的几何意义 如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,那么定积分f(x)dx表示由直线x=a,x=b,y=0和y=f(x)所围成的曲边梯形的面积. 5.定积分的性质 (1)kf(x)dx=kf(x)dx(k为常数); (2)[f1(x)±f2(x)]dx=f1(x)dx±f2(x)dx;