2019-2020学年人教A版选修2-2 第3章 数系的扩充与复数的引入 教案
2019-2020学年人教A版选修2-2   第3章 数系的扩充与复数的引入  教案第2页

  的联系;理解复数的基本概念以及复数相等的充要条件;了解复数的代数表示法及其几何意义;能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.

  注重提高学生的数学思维能力是高中数学课程的基本理念之一,也是高中数学教育的基本目标之一.人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程.它们是数学思维能力的具体体现.数系的扩充与复数的引入具体地综合体现了上述数学思维过程.这些使得学生可以在以往具体经历各种数学思维方式的基础上,在更高层次上加以理解.

  本章教学内容虽然不多,但中学阶段重要的数学思想方法都有所体现.

时,常用到待定系数法建立相应的方程组来解决.这充分体现了转化化归思想和方程思想.

  复数包括实数和虚数两部分,虚数还分纯虚数和非纯虚数.解决与复数概念有关的问题时,对虚部b的讨论十分关键.要合理地加以分类讨论,要注意不重复且不遗漏.

  复数的四则运算可类比实数运算来学习,但它不是实数运算合情推理的结果,而是一种"规定",是新的定义.复数的四则运算本身也是一个建构的过程,其前提是对虚数单位i的两个规定,从而形成了一个具有公理化结构特点的小系统.公理化思想的有机渗透,对学生体会数学精神,感悟数学本质很有教育价值.

  对本章的教学提出以下建议:

1.数的概念的发展与数系扩充是数学发展的一条重要线索.数系扩充的过程体现了数学的发现和创造过程,也体现了数学发生、发展的客观需求.教学中,应突出数系的扩充过程,让学生通过回忆以往的学习历程,了解数集的每一次扩充,既是客观实际的需要,又是数学内部发展的需要.从数的运算和解方程的角度感悟"实数不够用了",从而理解引入虚数的必要性.