八年级数学上册《整式的乘法与因式分解》教案教学设计免费下载13
八年级数学上册《整式的乘法与因式分解》教案教学设计免费下载13第2页

2.注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n(m、n是正整数).

作业:练习册1.2

课后反思:

14.1.2幂的乘方

教学目标: 经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。了解幂的乘方与积的乘方的运算性质,并能解决一些实际问题。

教学重点:会进行幂的乘方的运算,幂的乘方法则的总结及运用。

教学难点:会进行幂的乘方的运算,幂的乘方法则的总结及运用。

教学过程:

一、回顾同底数幂的乘法:

  am·an=am+n(m、n都是正整数)

二、自主探索,感知新知:

1.64表示_________个___________相乘.

2.(62)4表示_________个___________相乘.

3.a3表示_________个___________相乘.

4.(a2)3表示_________个___________相乘.

三、推广形式,得到结论:

1.(am)n =____×____×...×____ =____×____×...×____=_______

   即 (am)n= ______________(其中m、n都是正整数)

2.通过上面的探索活动,发现了什么?

   幂的乘方,底数__________,指数__________.

四、巩固成果,加强练习:

1.计算:(1)(103)5 (2)[()3]4 (3)[(-6)3]4

     (4)(x2)5 (5)-(a2)7 (6)-(as)3

2.判断题,错误的予以改正。

  (1)a5+a5=2a10 ( ) (2)(s3)3=x6 ( )

  (3)(-3)2·(-3)4=(-3)6=-36 ( )

  (4)x3+y3=(x+y)3 ( ) (5)[(m-n)3]4-[(m-n)2]6=0 ( )

五、新旧综合:

在上节课我们讲到,同底数幂相乘在不同底数时有两个特例可以进行运算,上节我们讲了一种情况:底数互为相反数,这节我们研究第二种情况:底数之间存在幂的关系

1.计算:23×42×83

2.计算:(1)(x3)4·x2 (2) 2(x2)n-(xn)2 (3) [(x2)3]7

六、提高练习:

1.计算:(1)5(P3)4·(-P2)3+2[(-P)2]4·(-P5)2

(2)[(-1)m]2n+1m-1+02002―(―1)1990

2.若(x2)m=x8,则m=______