图3122
(1)\s\up8(→(→)·\s\up8(→(→);
(2)\s\up8(→(→)·\s\up8(→(→);
(3)(\s\up8(→(→)+\s\up8(→(→))·(\s\up8(→(→)+\s\up8(→(→)).
[思路探究] 根据数量积的定义进行计算,求出每组向量中每个向量的模以及它们的夹角,注意充分结合正四面体的特征.
[解] (1)正四面体的棱长为1,则|\s\up8(→(→)|=|\s\up8(→(→)|=1.△OAB为等边三角形,∠AOB=60°,于是:
\s\up8(→(→)·\s\up8(→(→)=|\s\up8(→(→)||\s\up8(→(→)|cos〈\s\up8(→(→),\s\up8(→(→)〉
=|\s\up8(→(→)||\s\up8(→(→)|cos∠AOB=1×1×cos 60°=;
(2)由于E、F分别是OA、OC的中点,
所以EF═∥AC,
于是\s\up8(→(→)·\s\up8(→(→)=|\s\up8(→(→)||\s\up8(→(→)|cos〈\s\up8(→(→),\s\up8(→(→)〉
=|\s\up8(→(→)|·|\s\up8(→(→)|cos〈\s\up8(→(→),\s\up8(→(→)〉
=×1×1×cos〈\s\up8(→(→),\s\up8(→(→)〉
=×1×1×cos 120°=-;
(3)(\s\up8(→(→)+\s\up8(→(→))·(\s\up8(→(→)+\s\up8(→(→))
=(\s\up8(→(→)+\s\up8(→(→))·(\s\up8(→(→)-\s\up8(→(→)+\s\up8(→(→)-\s\up8(→(→))