2019-2020学年人教A版必修三 3.2.1 古典概型 教案
2019-2020学年人教A版必修三   3.2.1 古典概型  教案第3页

 因此P("正面朝上")=P("反面朝上")=.

即P("出现正面朝上")=.

试验二中,出现各个点的概率相等,即

P("1点")=P("2点")=P("3点")=P("4点")=P("5点")=P("6点").

反复利用概率的加法公式,我们有P("1点")+P("2点")+P("3点")+P("4点")+P("5点")+P("6点")=P(必然事件)=1.

所以P("1点")=P("2点")=P("3点")=P("4点")=P("5点")=P("6点")=.

进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

P("出现偶数点")=P("2点")+P("4点")+P("6点")=++==.

即P("出现偶数点")=.

因此根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:

P(A)=.

在使用古典概型的概率公式时,应该注意:

①要判断该概率模型是不是古典概型;

②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.

三、例题讲解:

例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?

活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.

解:基本事件共有6个:

A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.

点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.

例2 :单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?

解:(略)

点评:古典概型解题步骤:

(1)阅读题目,搜集信息;

(2)判断是否是等可能事件,并用字母表示事件;

(3)求出基本事件总数n和事件A所包含的结果数m;

(4)用公式P(A)=求出概率并下结论.