命题.
2.用逻辑联结词"且""或"联结两个命题时,关键是正确理解这些词语的意义及在日常生活中的同义词,选择合适的联结词,有时为了语法的要求及语句的通顺也可进行适当的省略和变形.
[跟踪训练]
1.分别写出由下列命题构成的"p∨q"、"p∧q"、"﹁p"形式的命题.
(1)p:梯形有一组对边平行,q:梯形有一组对边相等;
(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.
[解] (1)p∧q:梯形有一组对边平行且有一组对边相等.
p∨q:梯形有一组对边平行或有一组对边相等.
﹁p:梯形没有一组对边平行.
(2)p∧q:-1与-3是方程x2+4x+3=0的解.
p∨q:-1或-3是方程x2+4x+3=0的解.
﹁p:-1不是方程x2+4x+3=0的解.
含逻辑联结词命题的真假判断 已知命题p:方程x2-2ax-1=0有两个实数根;命题q:函数f(x)=x+x(4)的最小值为4.给出下列命题:
①p∧q;②p∨q;③p∧(﹁q);④(﹁p)∨(﹁q).
则其中真命题的个数为( )
A.1 B.2 C.3 D.4
[思路探究] →→
[解析] 由于Δ=(-2a)2-4×1×(-1)=4a2+4>0,所以方程x2-2ax-1=0有两个实数根,所以命题p是真命题;当x<0时,f(x)=x+x(4)<0,所以命题q为假命题,所以p∨q,p∧(﹁q),(﹁p)∨(﹁q)是真命题,故选C.
[答案] C