2019-2020学年北师大版选修2-2  数学归纳法 学案
2019-2020学年北师大版选修2-2   数学归纳法    学案第2页

====,

所以当n=k+1时,等式也成立.

由(1)(2)可知,对一切n∈N*等式都成立.

题型二 用数学归纳法证明整除性问题

【例2】 已知f(n)=(2n+7)·3n+9,是否存在自然数m使得任意的n∈N*,都有m整除f(n)?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.

【解析】 由f(1)=36,f(2)=108,f(3)=360,猜想:f(n)能被36整除,下面用数学归纳法证明.

则当n=k+1时,f(k+1)=(2k+9)·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),

由假设知3[(2k+7)·3k+9]能被36 整除,又3k-1-1是偶数,

故18(3k-1-1)也能被36 整除.即n=k+1时结论也成立.

故由(1)(2)可知,对任意正整数n都有f(n)能被36整除.

由f(1)=36知36是整除f(n)的最大值.

【点拨】 与正整数n有关的整除性问题也可考虑用数学归纳法证明. 在证明n=k+1结论也成立时,要注意"凑形",即凑出归纳假设的形式,以便于充分利用归纳假设的条件.

【变式训练2】求证:当n为正整数时,f(n)=32n+2-8n-9能被64整除.

【证明】方法一:①当n=1时,f(1)=34-8-9=64,命题显然成立.

②假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=32k+2-8k-9能被64整除.

由于32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),

所以n=k+1时命题也成立.

根据①②可知,对任意的n∈N*,命题都成立.

方法二:①当n=1时,f(1)=34-8-9=64,命题显然成立.

②假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.由归纳假设,设32k+2-8k-9=64m(m为大于1的自然数),将32k+2=64m+8k+9代入到f(k+1)中得

根据①②可知,对任意的n∈N*,命题都成立.

题型三 数学归纳法在函数、数列、不等式证明中的运用

【例3】(2013山东模拟)等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上.

(1)求r的值;

(2)当b=2时,记bn=2(log2an+1)(n∈N*),求证:对任意的n∈N*,不等式·

·...·>成立.

【解析】(1)因为点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上,

所以Sn=bn+r(b>0且b≠1,b,r均为常数).

当n=1时,a1=S1=b+r;当n≥2时,an=Sn-Sn-1=bn+r-bn-1-r=(b-1)bn-1.

又数列{an}为等比数列,故r=-1且公比为b.

(2)当b=2时,an=2n-1,

所以bn=2(log2an+1)=2(log22n-1+1)=2n(n∈N*),