同面的概率为.
(2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m的绳子上的任意一点.
第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm的大圆内的任意一点.
在这两个问题中,基本事件有无限多个,虽然类似于古典概型的"等可能性",但是显然不能用古典概型的方法求解.
考虑第一个问题,如右图,记"剪得两段的长都不小于1 m"为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的,
于是事件A发生的概率P(A)=.
第二个问题,如右图,记"射中黄心"为事件B,由于中靶心随机地落在面积为×π×1222 cm2的大圆内,而当中靶点落在面积为×π×12.22 cm2的黄心内时,事件B发生,于是事件B发生的概率P(B)==0.01.
(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.
(4)几何概型.
对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称几何概型.
几何概型的基本特点:
a.试验中所有可能出现的结果(基本事件)有无限多个;
b.每个基本事件出现的可能性相等.
(5)几何概型的概率公式:
P(A)=.