教学过程简要设计 一、新课导入:
1.出示教材第5页例1。
12÷2=6 9÷5=1.8 30÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.71 20÷10=2 21÷21=1 63÷9=7
(1)观察。
引导:观察例1中的算式,你发现了什么?(都是除法算式)
(2)分类。引导:你能把上面的除法算式分类吗?
学生分类后,教师组织学生交流,引导学生根据是否整除分为以下两类:
第一类 12÷2=6 20÷10=2 30÷6=5 21÷21=1 63÷9=7 第二类 9÷5=1.8 19÷7≈2.71 2÷3=0.6 26÷8=3.25 2.引入课题。这节课我们就来学习有关数的整除的相关知识。(板书课题)因数和倍数)
二、探索新知:
1.明确因数与倍数的意义。(教学例1)
(1)教师引导。教师指出:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如:12÷2=6,我们说12是2和6的倍数,2和6是12的因数。
(2)学生尝试。
教师让学生说一说第一类的每个算式中,谁是谁的因数?谁是谁的倍数?
先同桌互相说一说,再组织全班交流。
(3)深化认识。师:通过刚才的说一说活动,你发现了什么?
引导学生体会:因数和倍数虽是两个不同的概念,但又是相互依存的,二者不能单独存在。我们不能说谁是因数,谁是倍数,而应该说谁是谁的因数,谁是谁的倍数。例如,30÷6=5,30是6和5的倍数,6和5是30的因数。
教师强调,并让学生注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括O)。
(4)即时练习。指导学生完成教材第5页"做一做"。
小结:如果a÷b =c(a,b,c均是不为0的自然数),那么a就是b和c的倍数,b和c是a的因数。因数和倍数是相互依存的。
2.探索找一个数因数的方法。(教学例2)
出示例2:18的因数有哪几个?
(1) 学生独立思考。
师:根据因数和倍数的意义,想一想18除以哪些整数的结果是整数。
18÷1=18,l和18是18的因数;
18÷2=9, 2和9是18的因数;
18÷3=6, 3和6是18的因数。
引导学生把18的因数按从小到大的顺序排列,每两个因数之间用逗号隔开,全部写完后用句号结束,即18的因数有:1,2,3,6,9 ,18。
(2)小组合作交流。
(3)采用集合图的方法。
教师指出也可用右面的集合图来表示18的全部因数。
(4)即时练习。让学生找出30的因数和36的因数。