2018-2019学年人教A版必修3 2.1.1 简单随机抽样 学案(1)
2018-2019学年人教A版必修3 2.1.1 简单随机抽样 学案(1)第2页

③它是一种不放回抽样,由于抽样实践中多采用不放回抽样,使其具有较广泛的实用性,而且由于所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算.

④它是一种等机会抽样,不仅每次从总体中抽取一个个体时,各个个体被抽到的机会相等,而且在整个抽样的过程中,各个个体被抽取的机会也相等,从而保证了这种抽样方法的公平性.

知识点三 抽签法和随机数法

思考 采用抽签法抽取样本时,为什么将编号写在形状、大小相同的号签上,并且将号签放在同一个箱子里搅拌均匀?

答案 为了使每个号签被抽取的可能性相等,保证抽样的公平性.

梳理 (1)抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.

(2)随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.

(3)利用随机数法抽取个体时的注意事项

①定起点:事先应确定以表中的哪个数(哪行哪列)作为起点.

②定方向:读数的方向(向左、向右、向上或向下都可以).

③读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,如果出现重复则跳过,直到取满所需的样本个体数.

1.简单随机抽样也可以是有放回的抽样.( × )

2.简单随机抽样中每个个体被抽到的机会相等.( √ )

3.采用随机数表法抽取样本时,个体编号的位数必须相同.( √ )

类型一 简单随机抽样的判断

例1 下列5个抽样中,简单随机抽样的个数是(  )

①从无数个个体中抽取50个个体作为样本;

②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;

③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出6个号签.

④箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.

A.0 B.1

C.2 D.3