又∵=,
∴≤(当且仅当a=b时取等号).
题型二 用均值不等式证明不等式
例2 已知x,y都是正数.
求证:(1)+≥2;
(2)(x+y)(x2+y2)(x3+y3)≥8x3y3.
证明 (1)∵x,y都是正数,∴>0,>0,
∴+≥2 =2,即+≥2,
当且仅当x=y时,等号成立.
(2)∵x,y都是正数,∴x+y≥2>0,
x2+y2≥2>0,x3+y3≥2>0,
∴(x+y)(x2+y2)(x3+y3)
≥2·2·2=8x3y3,
即(x+y)(x2+y2)(x3+y3)≥8x3y3,
当且仅当x=y时,等号成立.
反思感悟 利用均值不等式证明不等式的策略与注意事项
(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以"已知"看"可知",逐步推向"未知".
(2)注意事项:
①多次使用均值不等式时,要注意等号能否成立;②同向不等式相加是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用均值不等式证明的可重新组合,形成均值不等式模型,再使用.
跟踪训练2 已知a,b,c都是正实数,求证:(a+b)(b+c)·(c+a)≥8abc.
证明 ∵a,b,c都是正实数,
∴a+b≥2>0,b+c≥2>0,c+a≥2>0,