2019-2020学年人教A版必修三 3.2.1 古典概型 教案
2019-2020学年人教A版必修三   3.2.1 古典概型  教案第2页

(2)上述试验一的两个结果是"正面朝上"和"反面朝上",它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是"1点""2点""3点""4点""5点"和"6点",它们也都是随机事件,出现的概率是相等的,都是.

(3)根据以前的学习,上述试验一的两个结果"正面朝上"和"反面朝上",它们都是随机事件;上述试验二的6个结果"1点""2点""3点""4点""5点"和"6点",它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.

基本事件具有如下的两个特点:

①任何两个基本事件是互斥的;

②任何事件(除不可能事件)都可以表示成基本事件的和.

(4)在一个试验中如果

①试验中所有可能出现的基本事件只有有限个;(有限性)

②每个基本事件出现的可能性相等.(等可能性)

我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.

向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的"可能性相同",但这个试验不满足古典概型的第一个条件.

如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环......命中5环和不中环.你认为这是古典概型吗?为什么?

不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环......命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.

(5)古典概型,随机事件的概率计算

对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即

P("正面朝上")=P("反面朝上")

由概率的加法公式,得

P("正面朝上")+P("反面朝上")=P(必然事件)=1.