小林的骑车速度是每分钟250m,小云的骑车速度是每分钟200m。问题:两人何时相遇?
2.质疑:求相遇的时间是什么意思?
引导学生明白:这里的路程已经不是一个人行驶了,而是两个人行驶的路之和。相遇的时间就是两个人共同行使全程用的时间。
3.活动:让学生上台走一走演示相遇,并用画线段图的方法分析数量关系。
出示线段图,教师讲解线段图:
先用一条线段表示全程,小林与小云分别从相对的方向出发,经过一段时间后相遇,也就是行完了全程。
追问:从线段图中,你知道了什么?
学生交流,汇报:小林骑的路程+小云骑的路程=总路程。
4.质疑:现在能不能求出小林骑的路程和小云的路程呢?
引导学生汇报:都不能求出,因为他们行驶的时间不知道。
再思考:他们两个行驶的时间一样吗?为什么?
学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该是一样的,可以把他们行驶的时间都设为x 。
5.让学生根据分析,尝试列方程解答问题。
小组交流,汇报,教师根据学生的汇报板书(见板书设计):
引导学生对这两种方法进行比较:通过比较可以知道这两种方法是运用了乘法分配律。
引导小结:在相遇问题中有哪些等量关系?
板书:甲速×相遇时间+乙速×相遇时间=路程
(甲速+乙速)×相遇时间=路程
三、 展示交流,反馈诊断
出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?
指名学生读题,找出已知所求,引导学生根据复习题的线段图画出线段图,并解答。
解:设甲车平均每小时行x 千米。