答案:31
2.图书馆有8本不同的有关励志教育的书,任选3本分给3个同学,每人1本,有________种不同的分法.
解析:分三步进行:第一步,先分给第一个同学,从8本书中选一本,共有8种方法;第二步,再分给第二个同学,从剩下的7本中任选1本,共有7种方法;第三步,分给第三个同学,从剩下的6本中任选1本,共有6种方法.所以不同分法有8×7×6=336种.
答案:336
用计数原理解决组数问题
[典例] 用0,1,2,3,4五个数字,
(1)可以排出多少个三位数字的电话号码?
(2)可以排成多少个三位数?
(3)可以排成多少个能被2整除的无重复数字的三位数?
[解] (1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(种).
(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(种).
(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18(种)排法.因而有12+18=30(种)排法.即可以排成30个能被2整除的无重复数字的三位数.
组数问题的常见类型及解决原则
(1)常见的组数问题
①组成的数为"奇数""偶数""被某数整除的数";
②在某一定范围内的数的问题;
③各位数字和为某一定值问题;
④各位数字之间满足某种关系问题等.
(2)解决原则
①明确特殊位置或特殊数字,是我们采用"分类"还是"分步"的关键.一般按特