(3)运动时间t=.
如图3所示,小球以15 m/s的水平初速度向一倾角为37°的斜面抛出,飞行一段时间后,恰好垂直撞在斜面上.(不计空气阻力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,tan 37°=)在这一过程中,求:
图3
(1)小球在空中的飞行时间;
(2)抛出点距撞击点的竖直高度;
(3)小球撞到斜面时,小球在竖直方向上下落的距离与在水平方向上通过的距离之比是多少?
[解析] (1)将小球垂直撞在斜面上的速度分解,如图所示.
由图可知θ=37°,φ=90°-37°=53°.
tan φ=,
则t=tan φ=× s=2 s.
(2)h=gt2=×10×22m=20 m.
(3)小球在竖直方向上下落的距离y=gt2=20 m,小球在水平方向上通过的距离x=v0t=30 m,所以y∶x=2∶3.
[答案] (1)2 s (2)20 m (3)2∶3