A.口袋中有2个白球和3个黑球,从中任取一球,基本事件为和
B.在区间[-1,5]上任取一个实数x,使x2-3x+2>0
C.抛一枚质地均匀的硬币,观察其出现正面或反面
D.某人射击中靶或不中靶
解析:选C A中两个基本事件不是等可能的;B中基本事件的个数是无限的;D中"中靶"与"不中靶"不是等可能的;C符合古典概型的两个特征,故选C.
3.从甲、乙、丙三人中任选两人担任课代表,甲被选中的概率为( )
A.2(1) B.3(1)
C.3(2) D.1
解析:选C 从甲、乙、丙三人中任选两人有:(甲、乙)、(甲、丙)、(乙、丙)共3种情况,其中,甲被选中的情况有2种,故甲被选中的概率为P=3(2).
4.两个骰子的点数分别为b,c,则方程x2+bx+c=0有两个实根的概率为( )
A.2(1) B.36(15)
C.36(19) D.6(5)
解析:选C (b,c)共有36个结果,方程有解,则Δ=b2-4c≥0,∴b2≥4c,满足条件的数记为(b2,4c),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P=36(19).
基本事件的计数问题 [典例] (1)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( )
A.2 B.3
C.4 D.6
(2)连续掷3枚硬币,观察这3枚硬币落在地面上时是正面朝上还是反面朝上.
①写出这个试验的所有基本事件;
②求这个试验的基本事件的总数;
③"恰有两枚硬币正面朝上"这一事件包含哪些基本事件?
[解析] (1)用列举法列举出"数字之和为奇数"的可能结果为:(1,2),(1,4),(2,3),(3,4)