一、导数的概念
1.函数在点x0处的导数
f′(x0)= ,Δx是自变量x在x0附近的改变量,它可正、可负,但不可为零,f′(x0)是一个常数.
2.导函数
f′(x)= ,f′(x)为f(x)的导函数,不是一个常数.
二、导数的几何意义
1.f′(x0)是函数y=f(x)在点(x0,f(x0))处切线的斜率,这是导数的几何意义.
2.求切线方程
常见的类型有两种:
一是函数y=f(x)"在点x=x0处的切线方程",这种类型中(x0,f(x0))是曲线上的点,其切线方程为y-f(x0)=f′(x0)(x-x0).