2017-2018学年北师大版必修4 1.6余弦函数的图像与性质 教案
2017-2018学年北师大版必修4 1.6余弦函数的图像与性质 教案第2页

性质时,教师要引导学生充分挖掘余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的.因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.

由诱导公式y=cosx=cos(-x)=sin[-(-x)]=sin(+x)可知,y=cosx的图像就是函数y=sin(+x)的图像.从而,余弦函数y=cosx的图像可以通过将正弦曲线y=sinx向左平移个单位长度得到(如图1所示).

图1

也可以利用描点法作出余弦函数的图像(如图2所示).余弦函数y=cosx(x∈R)的图像叫作余弦曲线.

图2

教师引导学生类比正弦函数的性质学习,让学生观察余弦函数的图像,从定义域、值域、周期性、最大值与最小值、单调性、奇偶性这几个方面探究.可完全放给学生自己探究,教师仅是适时地给予引导.学生很容易得出余弦函数y=cosx,x∈R具有以下主要性质:

(1)定义域

余弦函数的定义域是R.

(2)值域

余弦函数的值域是[-1,1].

(3)周期性

余弦函数是周期函数,它的最小正周期是2π.

由于余弦函数具有周期性,为了研究问题方便,我们可以选取任意一个x值,讨论余弦函数在区间[x,x+2π]上的性质,然后拓展到整个定义域(-∞,+∞)上.

(4)最大值与最小值

当x=2kπ(k∈Z)时,余弦函数取得最大值1;

当x=(2k+1)π(k∈Z)时,余弦函数取得最小值-1.

(5)单调性

我们选取长度为2π的区间[-π,π].可以看出,当x由-π增大到0时,cosx的值由-1增大到1,当x由0增大到π时,cosx的值由1减小到-1.

因此,余弦函数在区间[-π,0]上递增,在区间[0,π]上递减.

由余弦函数的周期性可知,余弦函数在每一个区间[(2k-1)π,2kπ](k∈Z)上都是递增的,在每一个区间[2kπ,(2k+1)π](k∈Z)上都是递减的.所以这两类闭区间的每一个都是余弦函数的单调区间.