2018-2019学年人教A版 选修1-1 1.4.2全称量词与存在量词(二)量词否定 教案
2018-2019学年人教A版 选修1-1 1.4.2全称量词与存在量词(二)量词否定  教案第3页

解(1)否定:存在实数,虽然满足>4,但≤2。或者说:存在小于或等于2的数,满足>4。(完整表达为对任意的实数x, 若x2>4 则x>2)

(2)否定:虽然实数m≥0,但存在一个,使+ -m=0无实数根。(原意表达:对任意实数m,若m≥0,则x2+x-m=0有实数根。)

(3)否定:存在一个可以被5整除的整数,其末位不是0。

(4)否定:存在一个数能被8整除,但不能被4整除.(原意表达为所有能被8整除的数都能被4整除)

(5)否定:存在一个四边形,虽然它是正方形,但四条边中至少有两条不相等。(原意表达为无论哪个四边形,若它是正方形,则它的四条边中任何两条都相等。)

例4 写出下列命题的非命题与否命题,并判断其真假性。

(1)p:若x>y,则5x>5y;

(2)p:若x2+x﹤2,则x2-x﹤2;

(3)p:正方形的四条边相等;

(4)p:已知a,b为实数,若x2+ax+b≤0有非空实解集,则a2-4b≥0。

解:(1) P:若 x>y,则5x≤5y; 假命题

否命题:若x≤y,则5x≤5y;真命题

(2) P:若x2+x﹤2,则x2-x≥2;真命题

否命题:若x2+x≥2,则x2-x≥2);假命题。

(3) P:存在一个四边形,尽管它是正方形,然而四条边中至少有两条边不相等;假命题。

    否命题:若一个四边形不是正方形,则它的四条边不相等。假命题。

(4) P:存在两个实数a,b,虽然满足x2+ax+b≤0有非空实解集,但使a2-4b﹤0。假命题。

否命题:已知a,b为实数,若x2+ax+b≤0没有非空实解集,则a2-4b﹤0。真命题。

评注:命题的否定与否命题是完全不同的概念。其理由:

1.任何命题均有否定,无论是真命题还是假命题;而否命题仅针对命题"若P则q"提出来的。2.命题的否定(非)是原命题的矛盾命题,两者的真假性必然是一真一假,一假一真;而否命题与原命题可能是同真同假,也可能是一真一假。

3. 原命题"若P则q" 的形式,它的非命题"若p,则q";而它的否命题为 "若┓p,则┓q",既否定条件又否定结论。

六、回顾反思

在教学中,务必理清各类型命题形式结构、性质关系,才能真正准确地完整地表达出命题的否定,才能避犯逻辑性错误,才能更好把逻辑知识负载于其它知识之上,达到培养和发展学生的逻辑思维能力。

七、课后练习

1.命题p:存在实数m,使方程x2+mx+1=0有实数根,则"非p"形式的命题是( )

 A.存在实数m,使得方程x2+mx+1=0无实根;

 B.不存在实数m,使得方程x2+mx+1=0有实根;

 C.对任意的实数m,使得方程x2+mx+1=0有实根;

 D.至多有一个实数m,使得方程x2+mx+1=0有实根;

2.有这样一段演绎推理是这样的"有些有理数是分数,整数是有理数,则整数是分数"