求多项式的值时,首先计算最内层括号内一次多项式的值,即v1=v0x+an-1,然后由内向外逐层计算一次多项式的值,即
v2=v1x+an-2,
v3=v2x+an-3,
...
vn=vn-1x+a0.
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.
要点一 求两个正整数的最大公约数
例1 用更相减损术求261和319的最大公约数.
解 319-261=58,
261-58=203,
203-58=145,
145-58=87,
87-58=29,
58-29=29,
29-29=0,
所以319与261的最大公约数是29.
规律方法 利用更相减损术求两个正整数的最大公约数的一般步骤是:首先判断两个正整数是否都是偶数.若是,用2约简.也可以不除以2,直接求最大公约数,这样不影响最后结果.
跟踪演练1 用更相减损术求80和36的最大公约数.
解 80÷2=40 36÷2=18
40÷2=20 18÷2=9
20-9=11 11-9=2
9-2=7 7-2=5