证:A1O⊥平面GBD.
证明 如图所示,设 = a , = b,= c ,
则a·b = 0, b·c = 0, c·a = 0,
且|a| = |b| = |c| ,
而 =+=+(+)=e + (a + b),
= - = b - a , = +
=(+) + = (a + b ) - c
∴· = { c + a + b}·(b -a )
= c·( b - a ) + ( a + b) ·( b - a )
= c·b - c ·a + (|b|2 - | a |2
· = { c + a +b} - { a + b - c}
=( |a|2 +|b|2) - |c|2=0
∴A1O平面BDG
知识点七 空间向量的坐标运算
已知O为坐标原点,A,B,C三点的坐标分别为(2,-1,2),(4,5,-1),(-2,2,3),求满足下列条件的P点的坐
(1) = ( );
(2) = ( );
解 = (2,6,3),=(4,3,1)。
(1)=( ) =(6 , 3 , 4 )={3,, 2},
则P点的坐标为{3,,2).
(2)设P(x,y,z)则, =( x - 2 , y + 1 , z - 2 ).
又因为( - )= (3,,-2),
所以x=5, y= , z=0,
故P点坐标为(5,,0).
知识点八 坐标运算的应用