思路探究:(1)由求出a,b即可.
(2)对t分0 [解] (1)因为f′(x)=3x2+2ax,曲线在P(1,0)处的切线斜率为f′(1)=3+2a,即3+2a=-3,a=-3. 又函数过(1,0)点,即-2+b=0,b=2. 所以a=-3,b=2,f(x)=x3-3x2+2. (2)由f(x)=x3-3x2+2,得f′(x)=3x2-6x. 由f′(x)=0,得x=0或x=2. ①当0 ②当2 x
0
(0,2)
2
(2,t)
t
f′(x)
0
-
0
+
+
f(x)
2
单调递减↘
极小值-2
单调递增↗
t3-3t2+2
f(x)min=f(2)=-2,f(x)max为f(0)与f(t)中较大的一个. f(t)-f(0)=t3-3t2=t2(t-3)<0. 所以f(x)max=f(0)=2. 本例在(1)的结论下,关于x的方程f(x)=c在区间[1,3]上恰有两个相异的实根,求实数c的取值范围. [解] 令g(x)=f(x)-c=x3-3x2+2-c, g′(x)=3x2-6x=3x(x-2). 在x∈[1,2)上,g′(x)<0;在x∈(2,3]上,g′(x)>0.要使g(x)=0在[1,3]上恰有两个相异的实根,则解得-2 利用导数求极值和最值的步骤