简单的逻辑联结词(二)复合命题
教学目标:加深对"或""且""非"的含义的理解,能利用真值表判断含有复合命题的真假;
教学重点:判断复合命题真假的方法;
教学难点:对"p或q"复合命题真假判断的方法
课 型:新授课
教学手段:多媒体
一、创设情境
1.什么叫做命题?(可以判断真假的语句叫命题正确的叫真命题,错误的叫假命题)
2.逻辑联结词是什么?("或"的符号是"∨"、"且"的符号是"∧"、"非"的符号是"┑",这些词叫做逻辑联结词)
3.什么叫做简单命题和复合命题?(不含有逻辑联结词的命题是简单命题由简单命题和逻辑联结词"或"、"且"、"非"构成的命题是复合命题)
4.复合命题的构成形式是什么?
p或q(记作"p∨q" ); p且q(记作"p∨q" );非p(记作"┑q" ) 二、活动尝试
问题1: 判断下列复合命题的真假
(1)8≥7
(2)2是偶数且2是质数;
(3)不是整数;
解:(1)真;(2)真;(3)真;
命题的真假结果与命题的结构中的p和q的真假有什么联系吗?这中间是否存在规律?
三、师生探究
1."非p"形式的复合命题真假:
例1:写出下列命题的非,并判断真假:
(1)p:方程x2+1=0有实数根
(2)p:存在一个实数x,使得x2-9=0.
(3)p:对任意实数x,均有x2-2x+1≥0;
(4)p:等腰三角形两底角相等
显然,当p为真时,非p为假; 当p为假时,非p为真.
2."p且q"形式的复合命题真假:
例2:判断下列命题的真假:(1)正方形ABCD是矩形,且是菱形;
(2)5是10的约数且是15的约数
(3)5是10的约数且是8的约数
(4)x2-5x=0的根是自然数
所以得:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假。
3."p或q"形式的复合命题真假:
例3:判断下列命题的真假:(1)5是10的约数或是15的约数;
(2)5是12的约数或是8的约数;
(3)5是12的约数或是15的约数;
(4)方程x2-3x-4=0的判别式大于或等于零
当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。
四、数学理论
1."非p"形式的复合命题真假:
当p为真时,非p为假; 当p为假时,非p为真.