(3)y=cos u,u=x+1.
求复合函数的导数 【例2】 求下列函数的导数.
(1)y=e2x+1;(2)y=;
(3)y=5log2(1-x);(4)y=sin3x+sin 3x.
思路探究:先分析函数是怎样复合而成的,找出中间变量,分层求导.
[解] (1)函数y=e2x+1可看作函数y=eu和u=2x+1的复合函数,
∴y′x=y′u·ux′=(eu)′(2x+1)′=2eu=2e2x+1.
(2)函数y=可看作函数y=u-3和u=2x-1的复合函数,
∴y′x=y′u·ux′=(u-3)′(2x-1)′=-6u-4
=-6(2x-1)-4=-.
(3)函数y=5log2(1-x)可看作函数y=5log2u和u=1-x的复合函数,
∴y′x=y′u·u′x=(5log2u)′·(1-x)′
==.
(4)函数y=sin3x可看作函数y=u3和u=sin x的复合函数,函数y=sin 3x可看作函数y=sin v和v=3x的复合函数.
∴y′x=(u3)′·(sin x)′+(sin v)′·(3x)′
=3u2·cos x+3cos v
=3sin2x cos x+3cos 3x.
1.解答此类问题常犯两个错误
(1)不能正确区分所给函数是否为复合函数;
(2)若是复合函数,不能正确判断它是由哪些基本初等函数复合而成.
2.复合函数求导的步骤