(2)法则:____三角形法则_______
3.实数与向量的积:
(1)定义:实数λ与向量a的积是一个向量,记作λa,规定:|λa|=|λ||a|.当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa与a平行.
(2)运算律:λ(μa)=(λμ)a, (λ+μ)a=λa+μa, λ(a+b)=λa+λb.
特别提醒:
1) 向量的加、减及其与实数的积的结果仍是向量。
2) 重要定理:
向量共线定理:向量b与非零向量a共线的充要条件是有且仅有一个实数λ,使得b=λa,即b∥ab=λa(a≠0).
★ 重 难 点 突 破 ★
1.重点:理解向量及与向量相关的概念,掌握向量的几何表示,掌握向量的加法与减法,会正确运用三角形法则、平行四边形法则.
2.难点:掌握向量加法的交换律、结合律,并会用它们进行向量化简与计算.
3.重难点:.
问题1: 相等向量与平行向量的区别
答案:向量平行是向量相等的必要条件。
问题2:向量平行(共线)与直线平行(共线)有区别
答案:直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况。
问题3:对于两个向量平行的充要条件:
a∥ba=λb,只有b≠0才是正确的.而当b=0时,a∥b是a=λb的必要不充分条件.
问题4;向量与有向线段的区别:
(1)向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段
★ 热 点 考 点 题 型 探 析★
考点一: 向量及与向量相关的基本概念
题型1. 概念判析
[例1]判断下列各命题是否正确
(1)零向量没有方向 (2)若
(3)单位向量都相等 (4) 向量就是有向线段