解得
所得双曲线方程为
2. 例5:点到定点F(5,0)的距离和它到定直线的距离的比是常数,求点M的轨迹
分析:一般法求点的轨迹方程,教师可向学生简单介绍双曲线的第二定义;
解:设是点M到直线的距离,根据题意,所求轨迹的集合就是:
则:
将上式两边平方,并化简,得:
即:
3.练习:教科书练习 5
4.补充例题:
(1)已知双曲线C:x2-=1,过点P(1,1)作直线l,使l与C有且只有一个公共点,则满足上述条件的直线l共有
A.1条 B.2条 C.3条 D. 4条
解析:数形结合法,与渐近线平行、相切.
答案:D
(2)若双曲线x2-y2=1的右支上一点P(a,b)到直线y=x的距离为,则a+b的值为
A- B C± D±2
答案:B
解析:P(a,b)点在双曲线上,则有a2-b2=1,