④探究斜线在平面内的射影,讨论直线与平面所成的角.
⑤探究点到平面的距离.
活动:问题①引导学生结合事例观察探究.
问题②引导学生结合事例实验探究.
问题③引导学生进行语言转换.
问题④引导学生思考其合理性.
问题⑤引导学生回忆点到直线的距离得出点到平面的距离.
讨论结果:①直线与平面垂直的定义和画法:
教师演示实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线都垂直,书脊和桌面的位置关系给了我们直线和平面垂直的形象.从而引入概念:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.过一点有且只有一条直线和一个平面垂直;过一点有且只有一个平面和一条直线垂直.平面的垂线和平面一定相交,交点叫做垂足.直线和平面垂直的画法及表示如下:
如图2,表示方法为:a⊥α.
图2 图3
②如图3,请同学们准备一块三角形的纸片,我们一起做一个实验:过△ABC的顶点A翻折纸片,得折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触).
(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面所在的平面α垂直?
容易发现,当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在的平面α垂直.
如图4.
(1) (2)
图4
所以,当折痕AD垂直平面内的一条直线时,折痕AD与平面α不垂直,当折痕AD垂直平面内的两条直线时,折痕AD与平面α垂直.
③直线和平面垂直的判定定理用文字语言表示为:
如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
直线和平面垂直的判定定理用符号语言表示为:l⊥α.
直线和平面垂直的判定定理用图形语言表示为:如图5,