∴直线l′的方程是 或
8、已知点B(1,4),C(16,2),点A在直线x-3y+3 = 0上,并且使ABC的面积等于21,求点A的坐标。
解:直线BC方程为2x+5y-22 = 0,|BC| = ,设点A坐标(3y-3,y),则可求A到BC的距离为,∵ABC面积为21,∴,
∴,故点A坐标为()或().
考点二、两直线的关系(平行与垂直)
9.(2009安徽卷文)直线过点(-1,2)且与直线垂直,则的方程是
A. B.
C. D.
【解析】可得斜率为即,选A。
【答案】A
10.如果直线 与直线平行, 那么系数a = ( B )
A.-3 B.-6 C. D.
11.两条直线 垂直的充要条件是( A )
A. B.
C. D.
12.设a、b、c分别是△ABC中, A、B、C所对边的边长, 则直线
与的位置关系是( C )
A.平行 B.重合 C.垂直 D.相交但不垂直
13.已知点A(-2,4),B(4,2),且直线与线段AB恒相交,则的取值范围是__________
考点三、距离(两点间、点到直线和平行直线间的距离)
14、(2008全国Ⅱ卷文)原点到直线的距离为( )