2018-2019学年北师大版必修五 2.2 一元二次不等式的应用 学案
2018-2019学年北师大版必修五   2.2 一元二次不等式的应用        学案第3页

跟踪训练1 不等式<2的解集为(  )

A.{x|x≠-2} B.R

C.∅ D.{x|x<-2或x>2}

答案 A

解析 ∵x2+x+1=2+>0,∴原不等式⇔x2-2x-2<2x2+2x+2⇔x2+4x+4>0⇔(x+2)2>0,∴x≠-2.∴不等式的解集为{x|x≠-2}.

题型二 解一元高次不等式

例2 解下列不等式:

(1)x4-2x3-3x2<0;

(2)1+x-x3-x4>0;

(3)(6x2-17x+12)(2x2-5x+2)>0.

解 (1)原不等式可化为x2(x-3)(x+1)<0,

当x≠0时,x2>0,

由(x-3)(x+1)<0,得-1<x<3;

当x=0时,原不等式为0<0,无解.

∴原不等式的解集为{x|-1<x<3,且x≠0}.

(2)原不等式可化为(x+1)(x-1)(x2+x+1)<0,

而对于任意x∈R,恒有x2+x+1>0,

∴原不等式等价于(x+1)(x-1)<0,

∴原不等式的解集为{x|-1<x<1}.

(3)原不等式可化为(2x-3)(3x-4)(2x-1)(x-2)>0,

进一步化为(x-2)>0,

如图所示,得原不等式的解集为

反思与感悟 解高次不等式时,主导思想是降次,即因式分解后,能确定符号的因式应先