2018-2019学年高二数学苏教版选修2-1讲义:第1部分 第1章 1.2 第二课时 含逻辑联结词的命题的真假判断 Word版含解析
2018-2019学年高二数学苏教版选修2-1讲义:第1部分 第1章 1.2 第二课时 含逻辑联结词的命题的真假判断 Word版含解析第2页

  2.分别指出下列命题的构成形式及各命题的真假:

  (1)全等三角形周长相等或对应角相等;

  (2)9的算术平方根不是-3;

  (3)垂直于弦的直径平分这条弦并且平分弦所对的两段弧.

  解:(1)这个命题是p∨q的形式,其中p:全等三角形周长相等,q:全等三角形对应角相等,因为p真q真,所以p∨q为真.

  (2)这个命题是綈p的形式,其中p:9的算术平方根是-3,因为p假,所以綈p为真.

  (3)这个命题是p∧q的形式,其中p:垂直于弦的直径平分这条弦,q:垂直于弦的直径平分这条弦所对的两段弧,因为p真q真,所以p∧q为真.

  

含有逻辑联结词的命题的综合应用   

  [例2] 已知p:函数y=x2+mx+1在(-1,+∞)上单调递增,q:函数y=4x2+4(m-2)x+1大于零恒成立.若p或q为真,p且q为假,求m的取值范围.

  [思路点拨] 由p或q为真,p且q为假,可判断p和q一真一假,进而求m的范围.

  [精解详析] 若函数y=x2+mx+1在(-1,+∞)上单调递增,则-≤-1,解得m≥2,即p:m≥2;

  若函数y=4x2+4(m-2)x+1恒大于零,

  则Δ=16(m-2)2-16<0,解得1

  因为p或q为真,p且q为假,

  所以p、q一真一假,

  当p真q假时,由得m≥3,

  当p假q真时,由得1

  综上可知,m的取值范围是{m|m≥3或1

  [一点通] 

  1.含有逻辑联结词的命题p∧q、p∨q的真假可以用真值表来判断,反之根据命题p∧q、p∨q的真假也可以判断命题p、q的真假.

  2.解答这类问题的一般步骤:

  (1)先求出构成命题p∧q、p∨q的命题p、q成立时参数需满足的条件;

  (2)其次根据命题p∧q、p∨q的真假判定命题p、q的真假;

(3)根据p、q的真假求出参数的取值范围.