例1、已知直线和平面,如果,且,求证。
解析:让学生理解反证法的严密性和合理性;
证明:因为,
所以经过直线a , b 确定一个平面。
因为,而,
所以 与是两个不同的平面.
因为,且,
所以.
下面用反证法证明直线a与平面没有公共点.假设直线a 与平面有公共点,则,即点是直线 a 与b的公共点,这与矛盾.所以 .
点评:用反证法的基本步骤:
第一步 分清欲证不等式所涉及到的条件和结论;
第二步 作出与所证不等式相反的假定;
第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;
第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等利
例2、求证:不是有理数
解析:直接证明一个数是无理数比较困难,我们采用反证法.假设不是无理数,那么它就是有理数.我们知道,任一有理数都可以写成形如(互质, "的形式.下面我们看看能否由此推出矛盾.
证明:假设不是无理数,那么它就是有理数.于是,存在互质的正整数,使得,从而有,
因此,,
所以 m 为偶数.于是可设 ( k 是正整数),从而有
,即
所以n也为偶数.这与 m , n 互质矛盾!
由上述矛盾可知假设错误,从而是无理数.
点评:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
直观了解反证法的证明过程。否定结论,推出矛盾。提醒学生:使用反证法进行证明的关键是在正确的推理下得出矛盾。这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等。
进上步熟悉反证法的证题思路及步骤。
引导学生结合思考题和例题归纳出反证法所适用的题型特点和一般步骤。培养学生的归纳能力。 1. 通过思考题和例题,我们发现反证法适用于什么样的题目?
(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;
(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形。
2. 归纳一下反证法的证题一般步骤:
(1)否定命题的结论;
(2)进行合逻辑的推理;
(3)导出任何一种矛盾;
(4)肯定原命题的结论。