2017-2018学年人教A版选修2-2 1.5.1曲边梯形的面积1.5.2汽车行驶的路程 教案
2017-2018学年人教A版选修2-2   1.5.1曲边梯形的面积1.5.2汽车行驶的路程  教案第3页



过各分点作x轴的垂线,把曲边梯形分成n个小曲边梯形,它们的面积分别记作ΔS1,ΔS2,...,ΔSn.

(2)近似代替

在区间[,](i=1,2,...,n)上,以的函数值2作为高,小区间的长度Δx=作为底边的小矩形的面积作为第i个小曲边梯形的面积,即

ΔSi≈()2·.

(3)求和

曲边梯形的面积近似值为

S=ni=1Si≈ni=1()2·

=0·+()2·+()2·+...+()2·

=[12+22+...+(n-1)2]

=(1-)(1-).

(4)取极限

曲边梯形的面积为

S= (1-)(1-)=.

反思与感悟 求曲边梯形的思想及步骤:(1)思想:以直代曲、逼近;(2)步骤:分割→近似代替→求和→取极限;(3)关键:近似代替;(4)结果:分割越细,面积越精确.

跟踪训练1 求由抛物线y=x2与直线y=4所围成的曲边梯形的面积.

解 ∵y=x2为偶函数,图象关于y轴对称,∴所求曲边梯形的面积应为抛物线y=x2(x≥0)与直线x=0,y=4所围图形面积S阴影的2倍,下面求S阴影.

由,

得交点为(2,4),

如图所示,先求由直线x=0,x=2,y=0和曲线y=x2围成的曲边梯形的面积.